Electromagnetic Characterization of Composite Materials and Microwave Absorbing Modeling
نویسندگان
چکیده
This book chapter is based on the experimental activities conducted mainly at Sapienza University of Rome: Astronautic, Electric and Energetic Engineering Department in collaboration with University of Maryland, Institute for Research in Electronics and Applied Physics (IREAP). A branch of scientific research about composite materials is focused on electromagnetic characterization and subsequent application of electric conductive polymers. The use of such structures is relevant in aerospace/aeronautics, for electromagnetic (EM) protection from natural phenomena (lightning), and intentional interference with radar absorbing materials (RAM), in nuclear physics for shields adopted in particle accelerators, and for nuclear EM pulses (NEMP) protection, in electromagnetic compatibility (EMC) for equipment-level shielding, high-intensity radiated fields (HIRF) protection, anechoic chambers (for the realizations of wedges and pyramidal arrays), and human exposure mitigation. In this chapter, composite reinforced by carbon nanostructured materials are considered, mainly because of their interesting electromagnetic characteristics, such as high electrical conductivity and excellent microwave absorption. Composite materials as well their absorption capability are analyzed and numerical design of wide frequency band microwave absorbing structures is presented and discussed in details. It is crucial to highlight the need of interdisciplinary research fields to go through nanomaterials: besides nanotechnology, also electromagnetic wave propagation theory, composite materials manufacturing techniques, evolutionary computation algorithms, and use those to design the “quasi perfect absorber” are strongly required. In particular, we propose an inhomogeneous multilayer absorber made of micrometric graphite (at different wt%), and nanometric carbon particles (SWCNTs, MWCNTs, CNFs, at different wt%). At the end, an improvement of the traditional absorbers has been achieved upon optimization through an in-house winning particle optimization (WPO) algorithm, this last appositely conceived for absorbers optimization. Main goal of the presented work is to optimize the absorbers
منابع مشابه
Improving Radar Absorbing Capability of Polystyrene Nanocomposites: Preparation and Investigation of Microwave Absorbing Properties
Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene ...
متن کاملModeling of Shielding Composite Materials and Structures for Microwave Frequencies
Composites containing conducting inclusions are required in many engineering applications, especially, for the design of microwave shielding enclosures to ensure electromagnetic compatibility and electromagnetic immunity. Herein, multilayer shielding structures are studied, with both absorbing and reflecting composite layers. In this paper, fiber-filled composites are considered. For modeling a...
متن کاملMicrowave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties
This paper presents the processing and characterization of electromagnetic radiation absorbing paints and sheets based on magnetic and dielectric materials dispersed in polymeric matrices. Two different paint formulations containing carbonyl iron and/or polyaniline, using polyurethane as matrix, were prepared. Silicone sheets were also produced with polyaniline conducting polymer as filler. Mea...
متن کاملEffect of carbon black content on the microwave absorbing properties of CB/epoxy composites
To prevent serious electromagnetic interference, a single-layer and double layer wave-absorbing coating employing complex absorbents composed of carbon black with epoxy resin as matrix was prepared. The morphologies of carbon black /epoxy composites were characterized by scanning electron microscope and atomic force microscope, respectively. The carbon black particles exhibit obvious polyarom...
متن کاملOne-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application
Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existe...
متن کامل